首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7896篇
  免费   2213篇
  国内免费   2065篇
测绘学   58篇
大气科学   217篇
地球物理   994篇
地质学   8651篇
海洋学   678篇
天文学   11篇
综合类   288篇
自然地理   1277篇
  2024年   29篇
  2023年   178篇
  2022年   405篇
  2021年   504篇
  2020年   411篇
  2019年   545篇
  2018年   464篇
  2017年   600篇
  2016年   611篇
  2015年   541篇
  2014年   636篇
  2013年   658篇
  2012年   608篇
  2011年   569篇
  2010年   510篇
  2009年   632篇
  2008年   541篇
  2007年   575篇
  2006年   475篇
  2005年   422篇
  2004年   349篇
  2003年   295篇
  2002年   262篇
  2001年   191篇
  2000年   178篇
  1999年   202篇
  1998年   127篇
  1997年   136篇
  1996年   99篇
  1995年   81篇
  1994年   81篇
  1993年   60篇
  1992年   73篇
  1991年   44篇
  1990年   18篇
  1989年   16篇
  1988年   15篇
  1987年   4篇
  1986年   6篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   6篇
  1979年   5篇
  1977年   1篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
南黄海中—新生代盆地经历了中生代印支运动以来的多期构造运动改造,凹陷分隔性强,各凹陷烃源岩发育条件差异大。利用地质调查获得的最新资料,从烃源岩有机质丰度、类型、成熟度以及成熟烃源岩体积参数等方面,重点探讨了中—新生代陆相盆地生烃条件好和较好的7个凹陷的烃源潜力及中—古生界海相烃源岩的演化特征。结果表明,北部坳陷的北部凹陷、东北凹陷以及南部坳陷的南四凹陷属于一类生烃凹陷,北部坳陷的南(西)部凹陷、南部坳陷的南五凹陷属于二类生烃凹陷,而北部坳陷的中—东部凹陷以及南部坳陷的南七凹陷为三类生烃凹陷。印支构造面之下的中—古生界海相层系是盆地内另一套重要烃源岩,其有机质热演化程度分异明显,在中—新生代凹陷间低凸起区最低,坳陷周围的隆起区最高,新生代凹陷区"基底层"内热演化程度介于上述两者之间。  相似文献   
962.
琼东南盆地深水区东区凹陷带,即松南—宝岛—长昌凹陷,位于琼东南盆地中央坳陷东端。在大量地震资料解释的基础上,对38条主要断层进行了详细分析。获得以下认识:(1)琼东南盆地深水区东区凹陷带平面上表现为近EW向展布的平行四边形,剖面结构表现为自西向东由半地堑—不对称的地堑—半地堑有规律变化。(2)琼东南盆地深水区东区凹陷带断裂系统可划分控制凹陷边界断层、控制洼陷沉积中心断层和调节性断层3类。(3)琼东南盆地深水区东区凹陷带古近纪时期受到太平洋板块俯冲和南海海盆扩张的双重影响,构造应力场发生NW—SE→SN转变。构造演化可划分为3个阶段:~32Ma,应力场以区域性NW—SE向伸展为主,断裂系统以NE—SW向为主,控制凹陷边界;32~26Ma,以南海海盆近SN向拉张应力场为主,断裂系统以NWW—SEE向为主,断层活动控制凹陷沉积中心;26~Ma,区域性伸展与南海海盆扩张应力均逐渐减弱,NE—SW向和NWW—SEE向断裂继承性发育。(4)琼东南盆地深水区东区凹陷带内部主要断层在渐新统崖城组和陵水组沉积时期活动速率快,地形高差大、沉积水体深、沉积厚度大,控制了崖城组和陵水组的大规模沉积,有利于烃源岩的发育。圈闭以受断层控制的断鼻和断块为主,长昌主洼凹中隆起带发育2个最为理想的构造圈闭。  相似文献   
963.
Factors of shale gas accumulation can be divided into the external and internal factors, according to accumulation mechanism and characteristics of shale gas. The internal factors mainly refer to parameters of organic geochemistry, mineral components and physical parameters. Six factors were presented in this study, i. e. organic matter, maturity, quartz, carbonate, clay mineral and pore. The external factors mainly refer to geologic environment of shale gas reservoir, including four factors: temperature, pressure, depth and thickness. Based on the experiment results of 26 samples of drilling cores from Wuling fold belt in Lower Paleozoic Silurian of the Upper Yangtze Basin, combined with the integrated analysis of geology, logging and test, the correlation of the gas content of shale gas to the above-mentioned ten factors was concluded. Six important evaluation indicators were preliminarily established in the gas-bearing core area of marine shale in the Upper Yangtze Basin.  相似文献   
964.
四川盆地三叠纪是主要的成钾期,目前发现的主要含钾矿物为杂卤石,有关早三叠世嘉陵江组四段石盐岩中杂卤石成因一直存在争议.采用薄片鉴定、扫描电镜、稀土元素和锶同位素等手段,分析了四川盆地东部垫江盐盆长寿地区嘉陵江组四段石盐岩中杂卤石矿物形态特征,初步探讨了该杂卤石成因及对寻找海相钾盐的指示意义.扫描电镜下与石盐岩共生的杂卤...  相似文献   
965.
A hydrological simulation in the Huaihe River Basin(HRB) was investigated using two different models: a coupled land surface hydrological model(CLHMS), and a large-scale hydrological model(LSX-HMS). The NCEP-NCAR reanalysis dataset and observed precipitation data were used as meteorological inputs. The simulation results from both models were compared in terms of flood processes forecasting during high flow periods in the summers of 2003 and 2007, and partial high flow periods in 2000. The comparison results showed that the simulated streamflow by CLHMS model agreed well with the observations with Nash-Sutcliffe coefficients larger than 0.76, in both periods of 2000 at Lutaizi and Bengbu stations in the HRB, while the skill of the LSX-HMS model was relatively poor. The simulation results for the high flow periods in 2003 and 2007 suggested that the CLHMS model can simulate both the peak time and intensity of the hydrological processes, while the LSX-HMS model provides a delayed flood peak. These results demonstrated the importance of considering the coupling between the land surface and hydrological module in achieving better predictions for hydrological processes, and CLHMS was proven to be a promising model for future applications in flood simulation and forecasting.  相似文献   
966.
Identification of the main hydrocarbon source rocks of the large Puguang gas field (northeastern Sichuan Basin, southwest China) has been the subject of much discussion in recent years. A key aspect has been the lack of a comprehensive understanding of the development of hydrocarbon source rocks of the Upper Permian Longtan Formation, which had been thought to contain mainly coal seams and thick carbonate layers. In this paper, based on geological data from more than ten wells and outcrops and their related mineralogy and geochemistry, we investigated the depositional environment and main factors controlling organic matter enrichment in the Longtan Formation. We propose a model which combines information on the geological environment and biological changes over time. In the model, organic matter from prolific phytoplankton blooms was deposited in quiescent platform interior sags with rising sea-levels. During the Longtan period, the area from Bazhong to Dazhou was a platform interior sag with relatively deep water and a closed environment, which was controlled by multiple factors including syngenetic fault settling, isolation of submarine uplifts and rising sea-levels leading to water column stratification. Although the bottom water was anoxic, the phytoplankton were able to bloom in the well-lit upper euphotic zone thus giving rise to a set of sapropelic black shales and marlstones containing mostly algal organic matter with minor terrestrial contributions. As a consequence, these rocks have a high hydrocarbon generation potentials and can be classified as high-quality source rocks. The area from Bazhong to Dazhou is a center of hydrocarbon generation, being the main source of reservoired paleo-oils and presently discovered as pyrobitumen in the Puguang gas field. The identification of these source rocks is very important to guide future petroleum exploration in the northeastern Sichuan Basin.  相似文献   
967.
968.
Multiple stages of large-scale shelf sand ridges, including the shoreface-attached and the offshore types, have developed in the Miocene successions on the mid-shelf region of the Pear River Mouth Basin, northern South China Sea. Utilizing a high-quality 3D seismic data set, accompanying 2D seismic profiles and well logs, the morphology, architecture and genesis of these shelf sand ridges have been systematically investigated in this study. The ridges are of very large scale, with the largest one having a maximum height of 64 m, a width of more than 20 km and a length of 37 km within the 3D survey area. Being mound-shaped, they also display obvious asymmetry character, with the ridge crest preferentially located on the SE side. Three main internal components, including the ridge front, central ridge and the ridge tail, have been recognized through careful anatomy analysis of the two most well-imaged ridges, each displaying distinct expressions on seismic amplitudes and geometries. In the plan view, most of the shelf sand ridges are generally NE–SW oriented and widening to the SW direction. Scouring features can also be clearly observed along the SW direction, including scour depressions and linear sandy remnants. On well logs, the shelf sand ridges are represented by an overall coarsening-upward pattern. Intervals with blocky sandstones are preferentially present on higher locations due to a differential winnowing process controlled by shelf topography.Plenty of evidence indicates that these ridges were primarily formed by the reworking of forced regressive or lowstand deltaic deposits under a persistent southwesterly flowing current during the subsequent transgression. This very current is a composite one, which is speculated to consist of winter oceanic current, SCSBK (South China Sea Branch of Kuroshio) intrusion onto the shelf and internal waves propagating from the Luzon Strait. Tidal currents might have contributed to the SE growth of the ridge. In response to the reglaciation of Antarctic ice-sheet and the closure of Pacific-Indian ocean seaway in the middle Miocene, the intensification of the North Pacific western boundary current was considered to have potential links to the initiation of the shelf sand ridges at ∼12 Ma. The development of shelf ridges was terminated and replaced by rapid deltaic progradation at ∼5.5 Ma.  相似文献   
969.
Gas occurrences consisting of carbon dioxide (CO2), hydrogen sulfide (H2S), and hydrocarbon (HC) gases and oil within the Dodan Field in southeastern Turkey are located in Cretaceous carbonate reservoir rocks in the Garzan and Mardin Formations. The aim of this study was to determine gas composition and to define the origin of gases in Dodan Field. For this purpose, gas samples were analyzed for their molecular and isotopic composition. The isotopic composition of CO2, with values of −1.5‰ and −2.8‰, suggested abiogenic origin from limestone. δ34S values of H2S ranged from +11.9 to +13.4‰. H2S is most likely formed from thermochemical sulfate reduction (TSR) and bacterial sulfate reduction (BSR) within the Bakuk Formation. The Bakuk Formation is composed of a dolomite dominated carbonate succession also containing anhydrite. TSR may occur within an evaporitic environment at temperatures of approximately 120–145 °C. Basin modeling revealed that these temperatures were reached within the Bakuk Formation at 10 Ma. Furthermore, sulfate reducing bacteria were found in oil–water phase samples from Dodan Field. As a result, the H2S in Dodan Field can be considered to have formed by BSR and TSR.As indicated by their isotopic composition, HC gases are of thermogenic origin and were generated within the Upper Permian Kas and Gomaniibrik Formations. As indicated by the heavier isotopic composition of methane and ethane, HC gases were later altered by TSR. Based on our results, the Dodan gas field may have formed as a result of the interaction of the following processes during the last 7–8 Ma: 1) thermogenic gas generation in Permian source rocks, 2) the formation of thrust faults, 3) the lateral-up dip migration of HC-gases due to thrust faults from the Kas Formation into the Bakuk Formation, 4) the formation of H2S and CO2 by TSR within the Bakuk Formation, 5) the vertical migration of gases into reservoirs through the thrust fault, and 6) lateral-up dip migration within reservoir rocks toward the Dodan structure.  相似文献   
970.
琼东南盆地深水区断层垂向输导及成藏模式   总被引:2,自引:1,他引:1  
In the Qiongdongnan Basin, faults are well developed.Based on the drilling results, the traps controlled two or more faults are oil-rich. However, when only one fault cut through the sand body, there is no sign for hy-drocarbon accumulation in the sandstone. In terms of this phenomenon, the principle of reservoir-forming controlled by fault terrace is proposed, i.e., when the single fault activates, because of the incompressibility of pore water, the resistance of pore and the direction of buoyancy, it is impossible for hydrocarbon to ac-cumulate in sandstone. But when there are two or more faults, one of the faults acts as the spillway so the hydrocarbon could fill in the pore of sandstone through other faults. In total five gas bearing structures and four failure traps are considered, as examples to demonstrate our findings. According to this theory, it is well-advised that south steep slope zone of Baodao-Changchang Depression, south gentle slope zone of Lingshui Depression, north steep slope zone of Lingshui Depression, and north steep slope zone of Baodao Depression are the most favorable step-fault zones, which are the main exploration direction in next stage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号